Publications

2004
Nicholas T Ingolia and Andrew W Murray. 2004. “The ups and downs of modeling the cell cycle.” Curr Biol, 14, 18, Pp. R771-7. Publisher's VersionAbstract
We discuss the impact of mathematical modeling on our understanding of the cell cycle. Although existing, detailed models confirm that the known interactions in the cell cycle can produce oscillations and predict behaviors such as hysteresis, they contain many parameters and are poorly constrained by data which are almost all qualitative. Questions about the basic architecture of the oscillator may be more amenable to modeling approaches that ignore molecular details. These include asking how the various elaborations of the basic oscillator affect the robustness of the system and how cells monitor their size and use this information to control the cell cycle.
2003
Marion A Shonn, Amara L Murray, and Andrew W Murray. 2003. “Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes.” Curr Biol, 13, 22, Pp. 1979-84. Publisher's VersionAbstract
Cell cycle checkpoints sense defects in chromosome metabolism, halt the cell cycle, and activate pathways that repair the defects. The spindle checkpoint arrests the cell cycle in response to defects in the interaction between microtubules and kinetochores (the proteinaceous complex assembled on centromeric DNA), but no repair function has been demonstrated for this checkpoint. We show that the roles of two spindle checkpoint components, Mad2 and Mad3, differ in meiosis I. In the absence of Mad2, meiosis I nondisjunction occurs at a high frequency and can be corrected by delaying the onset of anaphase. The absence of Mad3 does not induce nondisjunction, even though mad3Delta cells cannot arrest the cell cycle in response to kinetochores that lack either microtubules or tension on the linkage between chromosomes and microtubules. The two proteins have different roles in chromosome alignment. Compared to wild type and mad3Delta cells, mad2Delta mutants are slower to attach homologous chromosomes to opposite poles of the spindle. This observation suggests that Mad2 plays a role in reorienting chromosomes that are incorrectly attached to the spindle as well as delaying the cell cycle, whereas Mad3 is needed for the cell cycle delay, but not for chromosome reorientation.
2002
Needhi Bhalla, Sue Biggins, and Andrew W Murray. 2002. “Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior.” Mol Biol Cell, 13, 2, Pp. 632-45. Publisher's VersionAbstract
The budding yeast YCS4 gene encodes a conserved regulatory subunit of the condensin complex. We isolated an allele of this gene in a screen for mutants defective in sister chromatid separation or segregation. The phenotype of the ycs4-1 mutant is similar to topoisomerase II mutants and distinct from the esp1-1 mutant: the topological resolution of sister chromatids is compromised in ycs4-1 despite normal removal of cohesins from mitotic chromosomes. Consistent with a role in sister separation, YCS4 function is required to localize DNA topoisomerase I and II to chromosomes. Unlike its homologs in Xenopus and fission yeast, Ycs4p is associated with chromatin throughout the cell cycle; the only change in localization occurs during anaphase when the protein is enriched at the nucleolus. This relocalization may reveal the specific challenge that segregation of the transcriptionally hyperactive, repetitive array of rDNA genes can present during mitosis. Indeed, segregation of the nucleolus is abnormal in ycs4-1 at the nonpermissive temperature. Interrepeat recombination in the rDNA array is specifically elevated in ycs4-1 at the permissive temperature, suggesting that the Ycs4p plays a role at the array aside from its segregation. Furthermore, ycs4-1 is defective in silencing at the mating type loci at the permissive temperature. Taken together, our data suggest that there are mitotic as well as nonmitotic chromosomal abnormalities associated with loss of condensin function in budding yeast.
Nicholas T Ingolia and Andrew W Murray. 2002. “Signal transduction. History matters.” Science, 297, 5583, Pp. 948-9. Publisher's Version
Marion A Shonn, Robert McCarroll, and Andrew W Murray. 2002. “Spo13 protects meiotic cohesin at centromeres in meiosis I.” Genes Dev, 16, 13, Pp. 1659-71. Publisher's VersionAbstract
In the absence of Spo13, budding yeast cells complete a single meiotic division during which sister chromatids often separate. We investigated the function of Spo13 by following chromosomes tagged with green fluorescent protein. The occurrence of a single division in spo13Delta homozygous diploids depends on the spindle checkpoint. Eliminating the checkpoint accelerates meiosis I in spo13Delta cells and allows them to undergo two divisions in which sister chromatids often separate in meiosis I and segregate randomly in meiosis II. Overexpression of Spo13 and the meiosis-specific cohesin Rec8 in mitotic cells prevents separation of sister chromatids despite destruction of Pds1 and activation of Esp1. This phenotype depends on the combined overexpression of both proteins and mimics one aspect of meiosis I chromosome behavior. Overexpressing the mitotic cohesin, Scc1/Mcd1, does not substitute for Rec8, suggesting that the combined actions of Spo13 and Rec8 are important for preventing sister centromere separation in meiosis I.
2001
S Biggins and AW Murray. 2001. “The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint.” Genes Dev, 15, 23, Pp. 3118-29. Publisher's VersionAbstract
The spindle checkpoint prevents cell cycle progression in cells that have mitotic spindle defects. Although several spindle defects activate the spindle checkpoint, the exact nature of the primary signal is unknown. We have found that the budding yeast member of the Aurora protein kinase family, Ipl1p, is required to maintain a subset of spindle checkpoint arrests. Ipl1p is required to maintain the spindle checkpoint that is induced by overexpression of the protein kinase Mps1. Inactivating Ipl1p allows cells overexpressing Mps1p to escape from mitosis and segregate their chromosomes normally. Therefore, the requirement for Ipl1p in the spindle checkpoint is not a consequence of kinetochore and/or spindle defects. The requirement for Ipl1p distinguishes two different activators of the spindle checkpoint: Ipl1p function is required for the delay triggered by chromosomes whose kinetochores are not under tension, but is not required for arrest induced by spindle depolymerization. Ipl1p localizes at or near kinetochores during mitosis, and we propose that Ipl1p is required to monitor tension at the kinetochore.
AW Murray and D Marks. 2001. “Can sequencing shed light on cell cycling?” Nature, 409, 6822, Pp. 844-6. Publisher's VersionAbstract
Every organism must have cells that can replicate indefinitely. Can the draft human genome sequence tell us how the cell cycle works and how it evolved? We studied two protein families--the cyclins and their partners the cyclin-dependent kinases (Cdks)--and a conserved regulatory circuit, the spindle checkpoint. Disappointingly, we discovered a few novel cyclins and no new Cdks or components of the spindle checkpoint, and could shed little light on the organization of the cell cycle.
AW Murray. 2001. “Cell cycle. Centrioles at the checkpoint.” Science, 291, 5508, Pp. 1499-502. Publisher's Version
S Biggins, N Bhalla, A Chang, DL Smith, and AW Murray. 2001. “Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae.” Genetics, 159, 2, Pp. 453-70. Publisher's VersionAbstract
Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair alpha-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.
BM Stern and AW Murray. 2001. “Lack of tension at kinetochores activates the spindle checkpoint in budding yeast.” Curr Biol, 11, 18, Pp. 1462-7. Publisher's VersionAbstract
The spindle checkpoint delays the onset of anaphase until all pairs of sister chromatids are attached to the mitotic spindle. The checkpoint could monitor the attachment of microtubules to kinetochores, the tension that results from the two sister chromatids attaching to opposite spindle poles, or both. We tested the role of tension by allowing cells to enter mitosis without a prior round of DNA replication. The unreplicated chromatids are attached to spindle microtubules but are not under tension since they lack a sister chromatid that could attach to the opposite pole. Because the spindle checkpoint is activated in these cells, we conclude that the absence of tension at the yeast kinetochore is sufficient to activate the spindle checkpoint in mitosis.
2000
AD Rudner, KG Hardwick, and AW Murray. 2000. “Cdc28 activates exit from mitosis in budding yeast.” J Cell Biol, 149, 7, Pp. 1361-76. Publisher's VersionAbstract
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.
AW Murray. 2000. “Journey to the centre of the cell.” Nat Cell Biol, 2, 7, Pp. E130-1. Publisher's VersionAbstract
Over the last 20 years, studies of the biochemical oscillator that drives cell reproduction have revolutionized our understanding of the cell cycle. A recent Jaques Monod Conference, at the Station Biologique in Roscoff (30 April - 3 May 2000), concentrated on dissecting the elaborate structural rearrangements that the oscillator induces in order to push cells from interphase to mitosis and then to divide them in two.
KG Hardwick, RC Johnston, DL Smith, and AW Murray. 2000. “MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p.” J Cell Biol, 148, 5, Pp. 871-82. Publisher's VersionAbstract
We show that MAD3 encodes a novel 58-kD nuclear protein which is not essential for viability, but is an integral component of the spindle checkpoint in budding yeast. Sequence analysis reveals two regions of Mad3p that are 46 and 47% identical to sequences in the NH(2)-terminal region of the budding yeast Bub1 protein kinase. Bub1p is known to bind Bub3p (Roberts et al. 1994) and we use two-hybrid assays and coimmunoprecipitation experiments to show that Mad3p can also bind to Bub3p. In addition, we find that Mad3p interacts with Mad2p and the cell cycle regulator Cdc20p. We show that the two regions of homology between Mad3p and Bub1p are crucial for these interactions and identify loss of function mutations within each domain of Mad3p. We discuss roles for Mad3p and its interactions with other spindle checkpoint proteins and with Cdc20p, the target of the checkpoint.
AD Rudner and AW Murray. 2000. “Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex.” J Cell Biol, 149, 7, Pp. 1377-90. Publisher's VersionAbstract
Budding yeast initiates anaphase by activating the Cdc20-dependent anaphase-promoting complex (APC). The mitotic activity of Cdc28 (Cdk1) is required to activate this form of the APC, and mutants that are impaired in mitotic Cdc28 function have difficulty leaving mitosis. This defect can be explained by a defect in APC phosphorylation, which depends on mitotic Cdc28 activity in vivo and can be catalyzed by purified Cdc28 in vitro. Mutating putative Cdc28 phosphorylation sites in three components of the APC, Cdc16, Cdc23, and Cdc27, makes the APC resistant to phosphorylation both in vivo and in vitro. The nonphosphorylatable APC has normal activity in G1, but its mitotic, Cdc20-dependent activity is compromised. These results show that Cdc28 activates the APC in budding yeast to trigger anaphase. Previous reports have shown that the budding yeast Cdc5 homologue, Plk, can also phosphorylate and activate the APC in vitro. We show that, like cdc28 mutants, cdc5 mutants affect APC phosphorylation in vivo. However, although Cdc5 can phosphorylate Cdc16 and Cdc27 in vitro, this in vitro phosphorylation does not occur on in vivo sites of phosphorylation.
MA Shonn, R McCarroll, and AW Murray. 2000. “Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis.” Science, 289, 5477, Pp. 300-3. Publisher's VersionAbstract
The spindle checkpoint was characterized in meiosis of budding yeast. In the absence of the checkpoint, the frequency of meiosis I missegregation increased with increasing chromosome length, reaching 19% for the longest chromosome. Meiosis I nondisjunction in spindle checkpoint mutants could be prevented by delaying the onset of anaphase. In a recombination-defective mutant (spo11Delta), the checkpoint delays the biochemical events of anaphase I, suggesting that chromosomes that are attached to microtubules but are not under tension can activate the spindle checkpoint. Spindle checkpoint mutants reduce the accuracy of chromosome segregation in meiosis I much more than that in meiosis II, suggesting that checkpoint defects may contribute to Down syndrome.
BJ Howell, DB Hoffman, G Fang, AW Murray, and ED Salmon. 2000. “Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells.” J Cell Biol, 150, 6, Pp. 1233-50. Publisher's VersionAbstract
The spindle checkpoint prevents errors in chromosome segregation by inhibiting anaphase onset until all chromosomes have aligned at the spindle equator through attachment of their sister kinetochores to microtubules from opposite spindle poles. A key checkpoint component is the mitotic arrest-deficient protein 2 (Mad2), which localizes to unattached kinetochores and inhibits activation of the anaphase-promoting complex (APC) through an interaction with Cdc20. Recent studies have suggested a catalytic model for kinetochore function where unattached kinetochores provide sites for assembling and releasing Mad2-Cdc20 complexes, which sequester Cdc20 and prevent it from activating the APC. To test this model, we examined Mad2 dynamics in living PtK1 cells that were either injected with fluorescently labeled Alexa 488-XMad2 or transfected with GFP-hMAD2. Real-time, digital imaging revealed fluorescent Mad2 localized to unattached kinetochores, spindle poles, and spindle fibers depending on the stage of mitosis. FRAP measurements showed that Mad2 is a transient component of unattached kinetochores, as predicted by the catalytic model, with a t(1/2) of approximately 24-28 s. Cells entered anaphase approximately 10 min after Mad2 was no longer detectable on the kinetochores of the last chromosome to congress to the metaphase plate. Several observations indicate that Mad2 binding sites are translocated from kinetochores to spindle poles along microtubules. First, Mad2 that bound to sites on a kinetochore was dynamically stretched in both directions upon microtubule interactions, and Mad2 particles moved from kinetochores toward the poles. Second, spindle fiber and pole fluorescence disappeared upon Mad2 disappearance at the kinetochores. Third, ATP depletion resulted in microtubule-dependent depletion of Mad2 fluorescence at kinetochores and increased fluorescence at spindle poles. Finally, in normal cells, the half-life of Mad2 turnover at poles, 23 s, was similar to kinetochores. Thus, kinetochore-derived sites along spindle fibers and at spindle poles may also catalyze Mad2 inhibitory complex formation.
AW Murray. 2000. “Whither genomics?” Genome Biol, 1, 1, Pp. COMMENT003. Publisher's VersionAbstract
The flood of data from genome-wide analysis is transforming biology. We need to develop new, interdisciplinary approaches to convert these data into information about the components and structures of individual biological pathways and to use the resulting information to yield knowledge about general principles that explain the functions and evolution of life.
H Funabiki and AW Murray. 2000. “The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement.” Cell, 102, 4, Pp. 411-24. Publisher's VersionAbstract
At anaphase, the linkage betweeh sister chromatids is dissolved and the separated sisters move toward opposite poles of the spindle. We developed a method to purify metaphase and anaphase chromosomes from frog egg extracts and identified proteins that leave chromosomes at anaphase using a new form of expression screening. This approach identified Xkid, a Xenopus homolog of human Kid (kinesin-like DNA binding protein) as a protein that is degraded in anaphase by ubiquitin-mediated proteolysis. Immunodepleting Xkid from egg extracts prevented normal chromosome alignment on the metaphase spindle. Adding a mild excess of wild-type or nondegradable Xkid to egg extracts prevented the separated chromosomes from moving toward the poles. We propose that Xkid provides the metaphase force that pushes chromosome arms toward the equator of the spindle and that its destruction is needed for anaphase chromosome movement.
1999
S Biggins, FF Severin, N Bhalla, I Sassoon, AA Hyman, and AW Murray. 1999. “The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast.” Genes Dev, 13, 5, Pp. 532-44. Publisher's VersionAbstract
Chromosome segregation depends on kinetochores, the structures that mediate chromosome attachment to the mitotic spindle. We isolated mutants in IPL1, which encodes a protein kinase, in a screen for budding yeast mutants that have defects in sister chromatid separation and segregation. Cytological tests show that ipl1 mutants can separate sister chromatids but are defective in chromosome segregation. Kinetochores assembled in extracts from ipl1 mutants show altered binding to microtubules. Ipl1p phosphorylates the kinetochore component Ndc10p in vitro and we propose that Ipl1p regulates kinetochore function via Ndc10p phosphorylation. Ipl1p localizes to the mitotic spindle and its levels are regulated during the cell cycle. This pattern of localization and regulation is similar to that of Ipl1p homologs in higher eukaryotes, such as the human aurora2 protein. Because aurora2 has been implicated in oncogenesis, defects in kinetochore function may contribute to genetic instability in human tumors.
LH Hartwell, JJ Hopfield, S Leibler, and AW Murray. 1999. “From molecular to modular cell biology.” Nature, 402, 6761 Suppl, Pp. C47-52. Publisher's VersionAbstract
Cellular functions, such as signal transmission, are carried out by 'modules' made up of many species of interacting molecules. Understanding how modules work has depended on combining phenomenological analysis with molecular studies. General principles that govern the structure and behaviour of modules may be discovered with help from synthetic sciences such as engineering and computer science, from stronger interactions between experiment and theory in cell biology, and from an appreciation of evolutionary constraints.

Pages