Publications

1998
AW Murray. 1998. “How to compact DNA.” Science, 282, 5388, Pp. 425, 427. Publisher's Version
JC Waters, RH Chen, AW Murray, and ED Salmon. 1998. “Localization of Mad2 to kinetochores depends on microtubule attachment, not tension.” J Cell Biol, 141, 5, Pp. 1181-91. Publisher's VersionAbstract
A single unattached kinetochore can delay anaphase onset in mitotic tissue culture cells (Rieder, C.L., A. Schultz, R. Cole, G. Sluder. 1994. J. Cell Biol. 127:1301-1310). Kinetochores in vertebrate cells contain multiple binding sites, and tension is generated at kinetochores after attachment to the plus ends of spindle microtubules. Checkpoint component Mad2 localizes selectively to unattached kinetochores (Chen, R.-H., J.C. Waters, E.D. Salmon, and A.W. Murray. 1996. Science. 274:242-246; Li, Y., and R. Benezra. Science. 274: 246-248) and disappears from kinetochores by late metaphase, when chromosomes are properly attached to the spindle. Here we show that Mad2 is lost from PtK1 cell kinetochores as they accumulate microtubules and re-binds previously attached kinetochores after microtubules are depolymerized with nocodazole. We also show that when kinetochore microtubules in metaphase cells are stabilized with taxol, tension at kinetochores is lost. The phosphoepitope 3f3/2, which has been shown to become dephosphorylated in response to tension at the kinetochore (Nicklas, R.B., S.C. Ward, and G.J. Gorbsky. 1995. J. Cell Biol. 130:929-939), is phosphorylated on all 22 kinetochores after tension is reduced with taxol. In contrast, Mad2 only localized to an average of 2.6 out of the 22 kinetochores in taxol-treated PtK1 cells. Therefore, loss of tension at kinetochores occupied by microtubules is insufficient to induce Mad2 to accumulate on kinetochores, whereas unattached kinetochores consistently bind Mad2. We also found that microinjecting antibodies against Mad2 caused cells arrested with taxol to exit mitosis after approximately 12 min, while uninjected cells remained in mitosis for at least 6 h, demonstrating that Mad2 is necessary for maintenance of the taxol-induced mitotic arrest. We conclude that kinetochore microtubule attachment stops the Mad2 interactions at kinetochores which are important for inhibiting anaphase onset.
AW Murray. 1998. “MAP kinases in meiosis.” Cell, 92, 2, Pp. 157-9. Publisher's Version
GJ Gorbsky, RH Chen, and AW Murray. 1998. “Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase.” J Cell Biol, 141, 5, Pp. 1193-205. Publisher's VersionAbstract
In yeast, the Mad2 protein is required for the M phase arrest induced by microtubule inhibitors, but the protein is not essential under normal culture conditions. We tested whether the Mad2 protein participates in regulating the timing of anaphase onset in mammalian cells in the absence of microtubule drugs. When microinjected into living prophase or prometaphase PtK1 cells, anti-Mad2 antibody induced the onset of anaphase prematurely during prometaphase, before the chromosomes had assembled at the metaphase plate. Anti-Mad2 antibody-injected cells completed all aspects of anaphase including chromatid movement to the spindle poles and pole-pole separation. Identical results were obtained when primary human keratinocytes were injected with anti-Mad2 antibody. These studies suggest that Mad2 protein function is essential for the timing of anaphase onset in somatic cells at each mitosis. Thus, in mammalian somatic cells, the spindle checkpoint appears to be a component of the timing mechanism for normal mitosis, blocking anaphase onset until all chromosomes are aligned at the metaphase plate.
JF Charles, SL Jaspersen, RL Tinker-Kulberg, L.H. Wang, A Szidon, and DO Morgan. 1998. “The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae.” Curr Biol, 8, 9, Pp. 497-507. Publisher's VersionAbstract
BACKGROUND: Following chromosome segregation in anaphase, ubiquitin-dependent degradation of mitotic cyclins contributes to the exit from mitosis. A key step in this process is catalyzed by a ubiquitin-protein ligase known as the anaphase-promoting complex (APC), the regulation of which is poorly understood. The Polo-related protein kinase Cdc5 in Saccharomyces cerevisiae might encode a regulator of the APC, because cdc5 mutant cells arrest with a late mitotic phenotype similar to that observed in cells with defective cyclin destruction. RESULTS: We investigated the role of Cdc5 in the regulation of mitotic cyclin degradation. In cdc5-1 mutant cells, we observed a defect in the destruction of cyclins and a reduction in the cyclin-ubiquitin ligase activity of the APC. Overexpression of CDC5 resulted in increased APC activity and mitotic cyclin destruction in asynchronous cells or in cells arrested in metaphase. CDC5 mutation or overexpression did not affect the degradation of the APC substrate Pds 1, which is normally degraded at the metaphase-to-anaphase transition. Cyclin-specific APC activity in cells overexpressing CDC5 was reduced in the absence of the APC regulatory proteins Hct 1 and Cdc20. In G1, Cdc5 itself was degraded by an APC-dependent and Hct1-dependent mechanism. CONCLUSIONS: We conclude that Cdc5 is a positive regulator of cyclin-specific APC activity in late mitosis. Degradation of Cdc5 in G1 might provide a feedback mechanism by which the APC destroys its activator at the onset of the next cell cycle.
S Biggins and AW Murray. 1998. “Sister chromatid cohesion in mitosis.” Curr Opin Cell Biol, 10, 6, Pp. 769-75. Publisher's VersionAbstract
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified.
RH Chen, A Shevchenko, M Mann, and AW Murray. 1998. “Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores.” J Cell Biol, 143, 2, Pp. 283-95. Publisher's VersionAbstract
The spindle checkpoint prevents the metaphase to anaphase transition in cells containing defects in the mitotic spindle or in chromosome attachment to the spindle. When the checkpoint protein Xmad2 is depleted from Xenopus egg extracts, adding Xmad2 to its endogenous concentration fails to restore the checkpoint, suggesting that other checkpoint component(s) were depleted from the extract through their association with Xmad2. Mass spectrometry provided peptide sequences from an 85-kD protein that coimmunoprecipitates with Xmad2 from egg extracts. This information was used to clone XMAD1, which encodes a homologue of the budding yeast (Saccharomyces cerevisiae) checkpoint protein Mad1. Xmad1 is essential for establishing and maintaining the spindle checkpoint in egg extracts. Like Xmad2, Xmad1 localizes to the nuclear envelope and the nucleus during interphase, and to those kinetochores that are not bound to spindle microtubules during mitosis. Adding an anti-Xmad1 antibody to egg extracts inactivates the checkpoint and prevents Xmad2 from localizing to unbound kinetochores. In the presence of excess Xmad2, neither chromosomes nor Xmad1 are required to activate the spindle checkpoint, suggesting that the physiological role of Xmad1 is to recruit Xmad2 to kinetochores that have not bound microtubules.
AF Straight, JW Sedat, and AW Murray. 1998. “Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast.” J Cell Biol, 143, 3, Pp. 687-94. Publisher's VersionAbstract
The mitotic spindle is a complex and dynamic structure. Genetic analysis in budding yeast has identified two sets of kinesin-like motors, Cin8p and Kip1p, and Kar3p and Kip3p, that have overlapping functions in mitosis. We have studied the role of three of these motors by video microscopy of motor mutants whose microtubules and centromeres were marked with green fluorescent protein. Despite their functional overlap, each motor mutant has a specific defect in mitosis: cin8Delta mutants lack the rapid phase of anaphase B, kip1Delta mutants show defects in the slow phase of anaphase B, and kip3Delta mutants prolong the duration of anaphase to the point at which the spindle becomes longer than the cell. The kip3Delta and kip1Delta mutants affect the duration of anaphase, but cin8Delta does not.
1997
CD Webb, A Teleman, S. Gordon, A Straight, A Belmont, DC Lin, AD Grossman, A Wright, and R. Losick. 1997. “Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis.” Cell, 88, 5, Pp. 667-74. Publisher's VersionAbstract
To investigate chromosome segregation in B. subtilis, we introduced tandem copies of the lactose operon operator into the chromosome near the replication origin or terminus. We then visualized the position of the operator cassettes with green fluorescent protein fused to the Lac1 repressor. In sporulating bacteria, which undergo asymmetric cell division, origins localized near each pole of the cell whereas termini were restricted to the middle. In growing cells, which undergo binary fission, origins were observed at various positions but preferentially toward the poles early in the cell cycle. In contrast, termini showed little preference for the poles. These results indicate the existence of a mitotic-like apparatus that is responsible for moving the origin regions of newly formed chromosomes toward opposite ends of the cell.
RH Chen and A Murray. 1997. “Characterization of spindle assembly checkpoint in Xenopus egg extracts.” Methods Enzymol, 283, Pp. 572-84. Publisher's Version
GS Gordon, D Sitnikov, CD Webb, A Teleman, A Straight, R. Losick, AW Murray, and A Wright. 1997. “Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms.” Cell, 90, 6, Pp. 1113-21. Publisher's VersionAbstract
We have investigated DNA segregation in E. coli by inserting multiple lac operator sequences into the chromosome near the origin of replication (oriC), in the hisC gene, a terminus marker, and into plasmids P1 and F. Expression of a GFP-LacI fusion protein allowed visualization of lac operator localization. oriC was shown to be specifically localized at or near the cell poles, and when duplicated, one copy moved to the site of new pole formation near the site of cell division. In contrast, P1 and F localized to the cell center and on duplication appeared to move rapidly to the quarter positions in the cell. Our analysis suggests that different active processes are involved in movement and localization of the chromosome and of the two plasmids during segregation.
LH Hartwell, P Szankasi, CJ Roberts, AW Murray, and SH Friend. 1997. “Integrating genetic approaches into the discovery of anticancer drugs.” Science, 278, 5340, Pp. 1064-8. Publisher's VersionAbstract
The discovery of anticancer drugs is now driven by the numerous molecular alterations identified in tumor cells over the past decade. To exploit these alterations, it is necessary to understand how they define a molecular context that allows increased sensitivity to particular compounds. Traditional genetic approaches together with the new wealth of genomic information for both human and model organisms open up strategies by which drugs can be profiled for their ability to selectively kill cells in a molecular context that matches those found in tumors. Similarly, it may be possible to identify and validate new targets for drugs that would selectively kill tumor cells with a particular molecular context. This article outlines some of the ways that yeast genetics can be used to streamline anticancer drug discovery.
WF Marshall, A Straight, JF Marko, J Swedlow, A Dernburg, A Belmont, AW Murray, DA Agard, and JW Sedat. 1997. “Interphase chromosomes undergo constrained diffusional motion in living cells.” Curr Biol, 7, 12, Pp. 930-9. Publisher's VersionAbstract
BACKGROUND: Structural studies of fixed cells have revealed that interphase chromosomes are highly organized into specific arrangements in the nucleus, and have led to a picture of the nucleus as a static structure with immobile chromosomes held in fixed positions, an impression apparently confirmed by recent photobleaching studies. Functional studies of chromosome behavior, however, suggest that many essential processes, such as recombination, require interphase chromosomes to move around within the nucleus. RESULTS: To reconcile these contradictory views, we exploited methods for tagging specific chromosome sites in living cells of Saccharomyces cerevisiae with green fluorescent protein and in Drosophila melanogaster with fluorescently labeled topoisomerase ll. Combining these techniques with submicrometer single-particle tracking, we directly measured the motion of interphase chromatin, at high resolution and in three dimensions. We found that chromatin does indeed undergo significant diffusive motion within the nucleus, but this motion is constrained such that a given chromatin segment is free to move within only a limited subregion of the nucleus. Chromatin diffusion was found to be insensitive to metabolic inhibitors, suggesting that it results from classical Brownian motion rather than from active motility. Nocodazole greatly reduced chromatin confinement, suggesting a role for the cytoskeleton in the maintenance of nuclear architecture. CONCLUSIONS: We conclude that chromatin is free to undergo substantial Brownian motion, but that a given chromatin segment is confined to a subregion of the nucleus. This constrained diffusion is consistent with a highly defined nuclear architecture, but also allows enough motion for processes requiring chromosome motility to take place. These results lead to a model for the regulation of chromosome interactions by nuclear architecture.
J Nunnari, WF Marshall, A Straight, A Murray, JW Sedat, and P Walter. 1997. “Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA.” Mol Biol Cell, 8, 7, Pp. 1233-42. Publisher's VersionAbstract
To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle.
AF Straight, WF Marshall, JW Sedat, and AW Murray. 1997. “Mitosis in living budding yeast: anaphase A but no metaphase plate.” Science, 277, 5325, Pp. 574-8. Publisher's VersionAbstract
Chromosome movements and spindle dynamics were visualized in living cells of the budding yeast Saccharomyces cerevisiae. Individual chromosomal loci were detected by expression of a protein fusion between green fluorescent protein (GFP) and the Lac repressor, which bound to an array of Lac operator binding sites integrated into the chromosome. Spindle microtubules were detected by expression of a protein fusion between GFP and Tub1, the major alpha tubulin. Spindle elongation and chromosome separation exhibited biphasic kinetics, and centromeres separated before telomeres. Budding yeast did not exhibit a conventional metaphase chromosome alignment but did show anaphase A, movement of the chromosomes to the poles.
LH Hwang and AW Murray. 1997. “A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis.” Mol Biol Cell, 8, 10, Pp. 1877-87. Publisher's VersionAbstract
B-type cyclins are rapidly degraded at the transition between metaphase and anaphase and their ubiquitin-mediated proteolysis is required for cells to exit mitosis. We used a novel enrichment to isolate new budding mutants that arrest the cell cycle in mitosis. Most of these mutants lie in the CDC16, CDC23, and CDC27 genes, which have already been shown to play a role in cyclin proteolysis and encode components of a 20S complex (called the cyclosome or anaphase promoting complex) that ubiquitinates mitotic cyclins. We show that mutations in CDC26 and a novel gene, DOC1, also prevent mitotic cyclin proteolysis. Mutants in either gene arrest as large budded cells with high levels of the major mitotic cyclin (Clb2) protein at 37 degrees C and cannot degrade Clb2 in G1-arrested cells. Cdc26 associates in vivo with Doc1, Cdc16, Cdc23, and Cdc27. In addition, the majority of Doc1 cosediments at 20S with Cdc27 in a sucrose gradient, indicating that Cdc26 and Doc1 are components of the anaphase promoting complex.
AF Straight and AW Murray. 1997. “The spindle assembly checkpoint in budding yeast.” Methods Enzymol, 283, Pp. 425-40. Publisher's Version
1996
WA Wells and AW Murray. 1996. “Aberrantly segregating centromeres activate the spindle assembly checkpoint in budding yeast.” J Cell Biol, 133, 1, Pp. 75-84. Publisher's VersionAbstract
The spindle assembly checkpoint is the mechanism or set of mechanisms that prevents cells with defects in chromosome alignment or spindle assembly from passing through mitosis. We have investigated the effects of mini-chromosomes on this checkpoint in budding yeast by performing pedigree analysis. This method allowed us to observe the frequency and duration of cell cycle delays in individual cells. Short, centromeric linear mini-chromosomes, which have a low fidelity of segregation, cause frequent delays in mitosis. Their circular counterparts and longer linear mini-chromosomes, which segregate more efficiently, show a much lower frequency of mitotic delays, but these delays occur much more frequently in divisions where the mini-chromosome segregates to only one of the two daughter cells. Using a conditional centromere to increase the copy number of a circular mini-chromosome greatly increases the frequency of delayed divisions. In all cases the division delays are completely abolished by the mad mutants that inactivate the spindle assembly checkpoint, demonstrating that the Mad gene products are required to detect the subtle defects in chromosome behavior that have been observed to arrest higher eukaryotic cells in mitosis.
KG Hardwick, E Weiss, FC Luca, M Winey, and AW Murray. 1996. “Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption.” Science, 273, 5277, Pp. 953-6. Publisher's VersionAbstract
The spindle assembly checkpoint keeps cells with defective spindles from initiating chromosome segregation. The protein kinase Mps1 phosphorylates the yeast protein Mad1p when this checkpoint is activated, and the overexpression of Mps1p induces modification of Mad1p and arrests wild-type yeast cells in mitosis with morphologically normal spindles. Spindle assembly checkpoint mutants overexpressing Mps1p pass through mitosis without delay and can produce viable progeny, which demonstrates that the arrest of wild-type cells results from inappropriate activation of the checkpoint in cells whose spindle is fully functional. Ectopic activation of cell-cycle checkpoints might be used to exploit the differences in checkpoint status between normal and tumor cells and thus improve the selectivity of chemotherapy.
RH Chen, JC Waters, ED Salmon, and AW Murray. 1996. “Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores.” Science, 274, 5285, Pp. 242-6. Publisher's VersionAbstract
The spindle assembly checkpoint delays anaphase until all chromosomes are attached to a mitotic spindle. The mad (mitotic arrest-deficient) and bub (budding uninhibited by benzimidazole) mutants of budding yeast lack this checkpoint and fail to arrest the cell cycle when microtubules are depolymerized. A frog homolog of MAD2 (XMAD2) was isolated and found to play an essential role in the spindle assembly checkpoint in frog egg extracts. XMAD2 protein associated with unattached kinetochores in prometaphase and in nocodazole-treated cells and disappeared from kinetochores at metaphase in untreated cells, suggesting that XMAD2 plays a role in the activation of the checkpoint by unattached kinetochores. This study furthers understanding of the mechanism of cell cycle checkpoints in metazoa and provides a marker for studying the role of the spindle assembly checkpoint in the genetic instability of tumors.

Pages