Publications

1999
TC Norman, DL Smith, PK Sorger, BL Drees, SM O'Rourke, TR Hughes, CJ Roberts, SH Friend, S Fields, and AW Murray. 1999. “Genetic selection of peptide inhibitors of biological pathways.” Science, 285, 5427, Pp. 591-5. Publisher's VersionAbstract
Genetic selections were used to find peptides that inhibit biological pathways in budding yeast. The peptides were presented inside cells as peptamers, surface loops on a highly expressed and biologically inert carrier protein, a catalytically inactive derivative of staphylococcal nuclease. Peptamers that inhibited the pheromone signaling pathway, transcriptional silencing, and the spindle checkpoint were isolated. Putative targets for the inhibitors were identified by a combination of two-hybrid analysis and genetic dissection of the target pathways. This analysis identified Ydr517w as a component of the spindle checkpoint and reinforced earlier indications that Ste50 has both positive and negative roles in pheromone signaling. Analysis of transcript arrays showed that the peptamers were highly specific in their effects, which suggests that they may be useful reagents in organisms that lack sophisticated genetics as well as for identifying components of existing biological pathways that are potential targets for drug discovery.
KG Hardwick, R Li, C Mistrot, RH Chen, P Dann, A Rudner, and AW Murray. 1999. “Lesions in many different spindle components activate the spindle checkpoint in the budding yeast Saccharomyces cerevisiae.” Genetics, 152, 2, Pp. 509-18. Publisher's VersionAbstract
The spindle checkpoint arrests cells in mitosis in response to defects in the assembly of the mitotic spindle or errors in chromosome alignment. We determined which spindle defects the checkpoint can detect by examining the interaction of mutations that compromise the checkpoint (mad1, mad2, and mad3) with those that damage various structural components of the spindle. Defects in microtubule polymerization, spindle pole body duplication, microtubule motors, and kinetochore components all activate the MAD-dependent checkpoint. In contrast, the cell cycle arrest caused by mutations that induce DNA damage (cdc13), inactivate the cyclin proteolysis machinery (cdc16 and cdc23), or arrest cells in anaphase (cdc15) is independent of the spindle checkpoint.
JC Waters, RH Chen, AW Murray, GJ Gorbsky, ED Salmon, and RB Nicklas. 1999. “Mad2 binding by phosphorylated kinetochores links error detection and checkpoint action in mitosis.” Curr Biol, 9, 12, Pp. 649-52. Publisher's VersionAbstract
The spindle checkpoint must detect the presence of unattached or improperly attached kinetochores and must then inhibit progression through the cell cycle until the offending condition is resolved. Detection probably involves attachment-sensitive kinetochore phosphorylation (reviewed in [1,2]). A key player in the checkpoint's response is the Mad2 protein, which prevents activation of the anaphase-promoting complex (APC) by the Cdc20 protein [3-8]. Microinjection of Mad2 antibodies results in premature anaphase onset [9,10], and excess Mad2 protein causes arrest in mitosis [5,11]. We have previously shown that Mad2 localizes to unattached kinetochores in vertebrate cells, and that this localization ceases as kinetochores accumulate microtubules [10,12,13]. But how is Mad2 binding limited to unattached kinetochores? Here, we used lysed PtK1 cells to study kinetochore phosphorylation and Mad2 binding. We found that Mad2 binds to phosphorylated kinetochores, but not to unphosphorylated ones. Our data suggest that it is kinetochore protein phosphorylation that promotes Mad2 binding to unattached kinetochores. Thus, we have identified a probable molecular link between attachment-sensitive kinetochore phosphorylation and the inhibition of anaphase. The complete pathway for error control in mitosis can now be outlined.
S Biggins and AW Murray. 1999. “Sister chromatid cohesion in mitosis.” Curr Opin Genet Dev, 9, 2, Pp. 230-6. Publisher's VersionAbstract
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified. (This review is an updated version of one that was published in Current Opinion in Cell Biology 1998, 10:769-775.)
RH Chen, DM Brady, D Smith, AW Murray, and KG Hardwick. 1999. “The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins.” Mol Biol Cell, 10, 8, Pp. 2607-18. Publisher's VersionAbstract
The spindle checkpoint arrests the cell cycle at metaphase in the presence of defects in the mitotic spindle or in the attachment of chromosomes to the spindle. When spindle assembly is disrupted, the budding yeast mad and bub mutants fail to arrest and rapidly lose viability. We have cloned the MAD2 gene, which encodes a protein of 196 amino acids that remains at a constant level during the cell cycle. Gel filtration and co-immunoprecipitation analyses reveal that Mad2p tightly associates with another spindle checkpoint component, Mad1p. This association is independent of cell cycle stage and the presence or absence of other known checkpoint proteins. In addition, Mad2p binds to all of the different phosphorylated isoforms of Mad1p that can be resolved on SDS-PAGE. Deletion and mutational analysis of both proteins indicate that association of Mad2p with Mad1p is critical for checkpoint function and for hyperphosphorylation of Mad1p.
A Desai, A Murray, T. J. Mitchison, and CE Walczak. 1999. “The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro.” Methods Cell Biol, 61, Pp. 385-412. Publisher's Version
1998
LH Hwang, LF Lau, DL Smith, CA Mistrot, KG Hardwick, ES Hwang, A Amon, and AW Murray. 1998. “Budding yeast Cdc20: a target of the spindle checkpoint.” Science, 279, 5353, Pp. 1041-4. Publisher's VersionAbstract
The spindle checkpoint regulates the cell division cycle by keeping cells with defective spindles from leaving mitosis. In the two-hybrid system, three proteins that are components of the checkpoint, Mad1, Mad2, and Mad3, were shown to interact with Cdc20, a protein required for exit from mitosis. Mad2 and Mad3 coprecipitated with Cdc20 at all stages of the cell cycle. The binding of Mad2 depended on Mad1 and that of Mad3 on Mad1 and Mad2. Overexpression of Cdc20 allowed cells with a depolymerized spindle or damaged DNA to leave mitosis but did not overcome the arrest caused by unreplicated DNA. Mutants in Cdc20 that were resistant to the spindle checkpoint no longer bound Mad proteins, suggesting that Cdc20 is the target of the spindle checkpoint.
K Nabeshima, T Nakagawa, AF Straight, A Murray, Y Chikashige, YM Yamashita, Y Hiraoka, and M Yanagida. 1998. “Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle.” Mol Biol Cell, 9, 11, Pp. 3211-25. Publisher's VersionAbstract
In higher eukaryotic cells, the spindle forms along with chromosome condensation in mitotic prophase. In metaphase, chromosomes are aligned on the spindle with sister kinetochores facing toward the opposite poles. In anaphase A, sister chromatids separate from each other without spindle extension, whereas spindle elongation takes place during anaphase B. We have critically examined whether such mitotic stages also occur in a lower eukaryote, Schizosaccharomyces pombe. Using the green fluorescent protein tagging technique, early mitotic to late anaphase events were observed in living fission yeast cells. S. pombe has three phases in spindle dynamics, spindle formation (phase 1), constant spindle length (phase 2), and spindle extension (phase 3). Sister centromere separation (anaphase A) rapidly occurred at the end of phase 2. The centromere showed dynamic movements throughout phase 2 as it moved back and forth and was transiently split in two before its separation, suggesting that the centromere was positioned in a bioriented manner toward the poles at metaphase. Microtubule-associating Dis1 was required for the occurrence of constant spindle length and centromere movement in phase 2. Normal transition from phase 2 to 3 needed DNA topoisomerase II and Cut1 but not Cut14. The duration of each phase was highly dependent on temperature.
AW Murray. 1998. “How to compact DNA.” Science, 282, 5388, Pp. 425, 427. Publisher's Version
JC Waters, RH Chen, AW Murray, and ED Salmon. 1998. “Localization of Mad2 to kinetochores depends on microtubule attachment, not tension.” J Cell Biol, 141, 5, Pp. 1181-91. Publisher's VersionAbstract
A single unattached kinetochore can delay anaphase onset in mitotic tissue culture cells (Rieder, C.L., A. Schultz, R. Cole, G. Sluder. 1994. J. Cell Biol. 127:1301-1310). Kinetochores in vertebrate cells contain multiple binding sites, and tension is generated at kinetochores after attachment to the plus ends of spindle microtubules. Checkpoint component Mad2 localizes selectively to unattached kinetochores (Chen, R.-H., J.C. Waters, E.D. Salmon, and A.W. Murray. 1996. Science. 274:242-246; Li, Y., and R. Benezra. Science. 274: 246-248) and disappears from kinetochores by late metaphase, when chromosomes are properly attached to the spindle. Here we show that Mad2 is lost from PtK1 cell kinetochores as they accumulate microtubules and re-binds previously attached kinetochores after microtubules are depolymerized with nocodazole. We also show that when kinetochore microtubules in metaphase cells are stabilized with taxol, tension at kinetochores is lost. The phosphoepitope 3f3/2, which has been shown to become dephosphorylated in response to tension at the kinetochore (Nicklas, R.B., S.C. Ward, and G.J. Gorbsky. 1995. J. Cell Biol. 130:929-939), is phosphorylated on all 22 kinetochores after tension is reduced with taxol. In contrast, Mad2 only localized to an average of 2.6 out of the 22 kinetochores in taxol-treated PtK1 cells. Therefore, loss of tension at kinetochores occupied by microtubules is insufficient to induce Mad2 to accumulate on kinetochores, whereas unattached kinetochores consistently bind Mad2. We also found that microinjecting antibodies against Mad2 caused cells arrested with taxol to exit mitosis after approximately 12 min, while uninjected cells remained in mitosis for at least 6 h, demonstrating that Mad2 is necessary for maintenance of the taxol-induced mitotic arrest. We conclude that kinetochore microtubule attachment stops the Mad2 interactions at kinetochores which are important for inhibiting anaphase onset.
AW Murray. 1998. “MAP kinases in meiosis.” Cell, 92, 2, Pp. 157-9. Publisher's Version
GJ Gorbsky, RH Chen, and AW Murray. 1998. “Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase.” J Cell Biol, 141, 5, Pp. 1193-205. Publisher's VersionAbstract
In yeast, the Mad2 protein is required for the M phase arrest induced by microtubule inhibitors, but the protein is not essential under normal culture conditions. We tested whether the Mad2 protein participates in regulating the timing of anaphase onset in mammalian cells in the absence of microtubule drugs. When microinjected into living prophase or prometaphase PtK1 cells, anti-Mad2 antibody induced the onset of anaphase prematurely during prometaphase, before the chromosomes had assembled at the metaphase plate. Anti-Mad2 antibody-injected cells completed all aspects of anaphase including chromatid movement to the spindle poles and pole-pole separation. Identical results were obtained when primary human keratinocytes were injected with anti-Mad2 antibody. These studies suggest that Mad2 protein function is essential for the timing of anaphase onset in somatic cells at each mitosis. Thus, in mammalian somatic cells, the spindle checkpoint appears to be a component of the timing mechanism for normal mitosis, blocking anaphase onset until all chromosomes are aligned at the metaphase plate.
JF Charles, SL Jaspersen, RL Tinker-Kulberg, L.H. Wang, A Szidon, and DO Morgan. 1998. “The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae.” Curr Biol, 8, 9, Pp. 497-507. Publisher's VersionAbstract
BACKGROUND: Following chromosome segregation in anaphase, ubiquitin-dependent degradation of mitotic cyclins contributes to the exit from mitosis. A key step in this process is catalyzed by a ubiquitin-protein ligase known as the anaphase-promoting complex (APC), the regulation of which is poorly understood. The Polo-related protein kinase Cdc5 in Saccharomyces cerevisiae might encode a regulator of the APC, because cdc5 mutant cells arrest with a late mitotic phenotype similar to that observed in cells with defective cyclin destruction. RESULTS: We investigated the role of Cdc5 in the regulation of mitotic cyclin degradation. In cdc5-1 mutant cells, we observed a defect in the destruction of cyclins and a reduction in the cyclin-ubiquitin ligase activity of the APC. Overexpression of CDC5 resulted in increased APC activity and mitotic cyclin destruction in asynchronous cells or in cells arrested in metaphase. CDC5 mutation or overexpression did not affect the degradation of the APC substrate Pds 1, which is normally degraded at the metaphase-to-anaphase transition. Cyclin-specific APC activity in cells overexpressing CDC5 was reduced in the absence of the APC regulatory proteins Hct 1 and Cdc20. In G1, Cdc5 itself was degraded by an APC-dependent and Hct1-dependent mechanism. CONCLUSIONS: We conclude that Cdc5 is a positive regulator of cyclin-specific APC activity in late mitosis. Degradation of Cdc5 in G1 might provide a feedback mechanism by which the APC destroys its activator at the onset of the next cell cycle.
S Biggins and AW Murray. 1998. “Sister chromatid cohesion in mitosis.” Curr Opin Cell Biol, 10, 6, Pp. 769-75. Publisher's VersionAbstract
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified.
RH Chen, A Shevchenko, M Mann, and AW Murray. 1998. “Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores.” J Cell Biol, 143, 2, Pp. 283-95. Publisher's VersionAbstract
The spindle checkpoint prevents the metaphase to anaphase transition in cells containing defects in the mitotic spindle or in chromosome attachment to the spindle. When the checkpoint protein Xmad2 is depleted from Xenopus egg extracts, adding Xmad2 to its endogenous concentration fails to restore the checkpoint, suggesting that other checkpoint component(s) were depleted from the extract through their association with Xmad2. Mass spectrometry provided peptide sequences from an 85-kD protein that coimmunoprecipitates with Xmad2 from egg extracts. This information was used to clone XMAD1, which encodes a homologue of the budding yeast (Saccharomyces cerevisiae) checkpoint protein Mad1. Xmad1 is essential for establishing and maintaining the spindle checkpoint in egg extracts. Like Xmad2, Xmad1 localizes to the nuclear envelope and the nucleus during interphase, and to those kinetochores that are not bound to spindle microtubules during mitosis. Adding an anti-Xmad1 antibody to egg extracts inactivates the checkpoint and prevents Xmad2 from localizing to unbound kinetochores. In the presence of excess Xmad2, neither chromosomes nor Xmad1 are required to activate the spindle checkpoint, suggesting that the physiological role of Xmad1 is to recruit Xmad2 to kinetochores that have not bound microtubules.
AF Straight, JW Sedat, and AW Murray. 1998. “Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast.” J Cell Biol, 143, 3, Pp. 687-94. Publisher's VersionAbstract
The mitotic spindle is a complex and dynamic structure. Genetic analysis in budding yeast has identified two sets of kinesin-like motors, Cin8p and Kip1p, and Kar3p and Kip3p, that have overlapping functions in mitosis. We have studied the role of three of these motors by video microscopy of motor mutants whose microtubules and centromeres were marked with green fluorescent protein. Despite their functional overlap, each motor mutant has a specific defect in mitosis: cin8Delta mutants lack the rapid phase of anaphase B, kip1Delta mutants show defects in the slow phase of anaphase B, and kip3Delta mutants prolong the duration of anaphase to the point at which the spindle becomes longer than the cell. The kip3Delta and kip1Delta mutants affect the duration of anaphase, but cin8Delta does not.
1997
CD Webb, A Teleman, S. Gordon, A Straight, A Belmont, DC Lin, AD Grossman, A Wright, and R. Losick. 1997. “Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis.” Cell, 88, 5, Pp. 667-74. Publisher's VersionAbstract
To investigate chromosome segregation in B. subtilis, we introduced tandem copies of the lactose operon operator into the chromosome near the replication origin or terminus. We then visualized the position of the operator cassettes with green fluorescent protein fused to the Lac1 repressor. In sporulating bacteria, which undergo asymmetric cell division, origins localized near each pole of the cell whereas termini were restricted to the middle. In growing cells, which undergo binary fission, origins were observed at various positions but preferentially toward the poles early in the cell cycle. In contrast, termini showed little preference for the poles. These results indicate the existence of a mitotic-like apparatus that is responsible for moving the origin regions of newly formed chromosomes toward opposite ends of the cell.
RH Chen and A Murray. 1997. “Characterization of spindle assembly checkpoint in Xenopus egg extracts.” Methods Enzymol, 283, Pp. 572-84. Publisher's Version
GS Gordon, D Sitnikov, CD Webb, A Teleman, A Straight, R. Losick, AW Murray, and A Wright. 1997. “Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms.” Cell, 90, 6, Pp. 1113-21. Publisher's VersionAbstract
We have investigated DNA segregation in E. coli by inserting multiple lac operator sequences into the chromosome near the origin of replication (oriC), in the hisC gene, a terminus marker, and into plasmids P1 and F. Expression of a GFP-LacI fusion protein allowed visualization of lac operator localization. oriC was shown to be specifically localized at or near the cell poles, and when duplicated, one copy moved to the site of new pole formation near the site of cell division. In contrast, P1 and F localized to the cell center and on duplication appeared to move rapidly to the quarter positions in the cell. Our analysis suggests that different active processes are involved in movement and localization of the chromosome and of the two plasmids during segregation.
LH Hartwell, P Szankasi, CJ Roberts, AW Murray, and SH Friend. 1997. “Integrating genetic approaches into the discovery of anticancer drugs.” Science, 278, 5340, Pp. 1064-8. Publisher's VersionAbstract
The discovery of anticancer drugs is now driven by the numerous molecular alterations identified in tumor cells over the past decade. To exploit these alterations, it is necessary to understand how they define a molecular context that allows increased sensitivity to particular compounds. Traditional genetic approaches together with the new wealth of genomic information for both human and model organisms open up strategies by which drugs can be profiled for their ability to selectively kill cells in a molecular context that matches those found in tumors. Similarly, it may be possible to identify and validate new targets for drugs that would selectively kill tumor cells with a particular molecular context. This article outlines some of the ways that yeast genetics can be used to streamline anticancer drug discovery.

Pages