Ayellet V Segrè, Andrew W Murray, and Jun-Yi Leu. 2006. “High-resolution mutation mapping reveals parallel experimental evolution in yeast.” PLoS Biol, 4, 8, Pp. e256. Publisher's VersionAbstract
Understanding the genetic basis of evolutionary adaptation is limited by our ability to efficiently identify the genomic locations of adaptive mutations. Here we describe a method that can quickly and precisely map the genetic basis of naturally and experimentally evolved complex traits using linkage analysis. A yeast strain that expresses the evolved trait is crossed to a distinct strain background and DNA from a large pool of progeny that express the trait of interest is hybridized to oligonucleotide microarrays that detect thousands of polymorphisms between the two strains. Adaptive mutations are detected by linkage to the polymorphisms from the evolved parent. We successfully tested our method by mapping five known genes to a precision of 0.2-24 kb (0.1-10 cM), and developed computer simulations to test the effect of different factors on mapping precision. We then applied this method to four yeast strains that had independently adapted to a fluctuating glucose-galactose environment. All four strains had acquired one or more missense mutations in GAL80, the repressor of the galactose utilization pathway. When transferred into the ancestral strain, the gal80 mutations conferred the fitness advantage that the evolved strains show in the transition from glucose to galactose. Our results show an example of parallel adaptation caused by mutations in the same gene.
Dawn A Thompson, Michael M. Desai, and Andrew W Murray. 2006. “Ploidy controls the success of mutators and nature of mutations during budding yeast evolution.” Curr Biol, 16, 16, Pp. 1581-90. Publisher's VersionAbstract
BACKGROUND: We used the budding yeast Saccharomyces cerevisiae to ask how elevated mutation rates affect the evolution of asexual eukaryotic populations. Mismatch repair defective and nonmutator strains were competed during adaptation to four laboratory environments (rich medium, low glucose, high salt, and a nonfermentable carbon source). RESULTS: In diploids, mutators have an advantage over nonmutators in all conditions, and mutators that win competitions are on average fitter than nonmutator winners. In contrast, haploid mutators have no advantage when competed against haploid nonmutators, and haploid mutator winners are less fit than nonmutator winners. The diploid mutator winners were all superior to their ancestors both in the condition they had adapted to, and in two of the other conditions. This phenotype was due to a mutation or class of mutations that confers a large growth advantage during the respiratory phase of yeast cultures that precedes stationary phase. This generalist mutation(s) was not selected in diploid nonmutator strains or in haploid strains, which adapt primarily by fixing specialist (condition-specific) mutations. In diploid mutators, such mutations also occur, and the majority accumulates after the fixation of the generalist mutation. CONCLUSIONS: We conclude that the advantage of mutators depends on ploidy and that diploid mutators can give rise to beneficial mutations that are inaccessible to nonmutators and haploid mutators.
Vahan B Indjeian, Bodo M Stern, and Andrew W Murray. 2005. “The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes.” Science, 307, 5706, Pp. 130-3. Publisher's VersionAbstract
Chromosome alignment on the mitotic spindle is monitored by the spindle checkpoint. We identify Sgo1, a protein involved in meiotic chromosome cohesion, as a spindle checkpoint component. Budding yeast cells with mutations in SGO1 respond normally to microtubule depolymerization but not to lack of tension at the kinetochore, and they have difficulty attaching sister chromatids to opposite poles of the spindle. Sgo1 is thus required for sensing tension between sister chromatids during mitosis, and its degradation when they separate may prevent cell cycle arrest and chromosome loss in anaphase, a time when sister chromatids are no longer under tension.
Soni Lacefield and Andrew Murray. 2005. “A delay like no other.” Nat Genet, 37, 7, Pp. 662-3. Publisher's Version
Nathaniel S Edwards and Andrew W Murray. 2005. “Identification of xenopus CENP-A and an associated centromeric DNA repeat.” Mol Biol Cell, 16, 4, Pp. 1800-10. Publisher's VersionAbstract
Kinetochores are the proteinaceous complexes that assemble on centromeric DNA and direct eukaryotic chromosome segregation. The mechanisms by which higher eukaryotic cells define centromeres are poorly understood. Possible molecular contributors to centromere specification include the underlying DNA sequences and epigenetic factors such as binding of the centromeric histone centromere protein A (CENP-A). Frog egg extracts are an attractive system for studying centromere definition and kinetochore assembly. To facilitate such studies, we cloned a Xenopus laevis homologue of CENP-A (XCENP-A). We identified centromere-associated DNA sequences by cloning fragments of DNA that copurified with XCENP-A by chromatin immunoprecipitation. XCENP-A associates with frog centromeric repeat 1 (Fcr1), a 174-base pair repeat containing a possible CENP-B box. Southern blots of partially digested genomic DNA revealed large ordered arrays of Fcr1 in the genome. Fluorescent in situ hybridization with Fcr1 probes stained most centromeres in cultured cells. By staining lampbrush chromosomes, we specifically identified the 11 (of 18) chromosomes that stain consistently with Fcr1 probes.
Andrew W Murray. 2005. “Man Behaving Oddly.” The Scientist, 19, Pp. 56-55. Publisher's Version
Russell K Dorer, Sheng Zhong, John A Tallarico, Wing Hung Wong, Timothy J. Mitchison, and Andrew W Murray. 2005. “A small-molecule inhibitor of Mps1 blocks the spindle-checkpoint response to a lack of tension on mitotic chromosomes.” Curr Biol, 15, 11, Pp. 1070-6. Publisher's VersionAbstract
The spindle checkpoint prevents chromosome loss by preventing chromosome segregation in cells with improperly attached chromosomes [1, 2 and 3]. The checkpoint senses defects in the attachment of chromosomes to the mitotic spindle [4] and the tension exerted on chromosomes by spindle forces in mitosis [5, 6 and 7]. Because many cancers have defects in chromosome segregation, this checkpoint may be required for survival of tumor cells and may be a target for chemotherapy. We performed a phenotype-based chemical-genetic screen in budding yeast and identified an inhibitor of the spindle checkpoint, called cincreasin. We used a genome-wide collection of yeast gene-deletion strains and traditional genetic and biochemical analysis to show that the target of cincreasin is Mps1, a protein kinase required for checkpoint function [8]. Despite the requirement for Mps1 for sensing both the lack of microtubule attachment and tension at kinetochores, we find concentrations of cincreasin that selectively inhibit the tension-sensitive branch of the spindle checkpoint. At these concentrations, cincreasin causes lethal chromosome missegregation in mutants that display chromosomal instability. Our results demonstrate that Mps1 can be exploited as a target and that inhibiting the tension-sensitive branch of the spindle checkpoint may be a way of selectively killing cancer cells that display chromosomal instability.
Andrew Murray. 2004. “Q & A.” Curr Biol, 14, 2, Pp. R50. Publisher's Version
Andrew W Murray. 2004. “Recycling the cell cycle: cyclins revisited.” Cell, 116, 2, Pp. 221-34. Publisher's VersionAbstract
I discuss advances in the cell cycle in the 21 years since cyclin was discovered. The surprising redundancy amongst the classical cyclins (A, B, and E) and cyclin-dependent kinases (Cdk1 and Cdk2) show that the important differences between these proteins are when and where they are expressed rather than the proteins they phosphorylate. Although the broad principles of the cell cycle oscillator are widely accepted, we are surprisingly ignorant of its detailed mechanism. This is especially true of the anaphase promoting complex (APC), the machine that triggers chromosome segregation and the exit of mitosis by targeting securin and mitotic cyclins for destruction. I discuss how a cyclin/Cdk-based engine could have evolved to assume control of the cell cycle from other, older protein kinases.
Nicholas T Ingolia and Andrew W Murray. 2004. “The ups and downs of modeling the cell cycle.” Curr Biol, 14, 18, Pp. R771-7. Publisher's VersionAbstract
We discuss the impact of mathematical modeling on our understanding of the cell cycle. Although existing, detailed models confirm that the known interactions in the cell cycle can produce oscillations and predict behaviors such as hysteresis, they contain many parameters and are poorly constrained by data which are almost all qualitative. Questions about the basic architecture of the oscillator may be more amenable to modeling approaches that ignore molecular details. These include asking how the various elaborations of the basic oscillator affect the robustness of the system and how cells monitor their size and use this information to control the cell cycle.
Marion A Shonn, Amara L Murray, and Andrew W Murray. 2003. “Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes.” Curr Biol, 13, 22, Pp. 1979-84. Publisher's VersionAbstract
Cell cycle checkpoints sense defects in chromosome metabolism, halt the cell cycle, and activate pathways that repair the defects. The spindle checkpoint arrests the cell cycle in response to defects in the interaction between microtubules and kinetochores (the proteinaceous complex assembled on centromeric DNA), but no repair function has been demonstrated for this checkpoint. We show that the roles of two spindle checkpoint components, Mad2 and Mad3, differ in meiosis I. In the absence of Mad2, meiosis I nondisjunction occurs at a high frequency and can be corrected by delaying the onset of anaphase. The absence of Mad3 does not induce nondisjunction, even though mad3Delta cells cannot arrest the cell cycle in response to kinetochores that lack either microtubules or tension on the linkage between chromosomes and microtubules. The two proteins have different roles in chromosome alignment. Compared to wild type and mad3Delta cells, mad2Delta mutants are slower to attach homologous chromosomes to opposite poles of the spindle. This observation suggests that Mad2 plays a role in reorienting chromosomes that are incorrectly attached to the spindle as well as delaying the cell cycle, whereas Mad3 is needed for the cell cycle delay, but not for chromosome reorientation.
Needhi Bhalla, Sue Biggins, and Andrew W Murray. 2002. “Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior.” Mol Biol Cell, 13, 2, Pp. 632-45. Publisher's VersionAbstract
The budding yeast YCS4 gene encodes a conserved regulatory subunit of the condensin complex. We isolated an allele of this gene in a screen for mutants defective in sister chromatid separation or segregation. The phenotype of the ycs4-1 mutant is similar to topoisomerase II mutants and distinct from the esp1-1 mutant: the topological resolution of sister chromatids is compromised in ycs4-1 despite normal removal of cohesins from mitotic chromosomes. Consistent with a role in sister separation, YCS4 function is required to localize DNA topoisomerase I and II to chromosomes. Unlike its homologs in Xenopus and fission yeast, Ycs4p is associated with chromatin throughout the cell cycle; the only change in localization occurs during anaphase when the protein is enriched at the nucleolus. This relocalization may reveal the specific challenge that segregation of the transcriptionally hyperactive, repetitive array of rDNA genes can present during mitosis. Indeed, segregation of the nucleolus is abnormal in ycs4-1 at the nonpermissive temperature. Interrepeat recombination in the rDNA array is specifically elevated in ycs4-1 at the permissive temperature, suggesting that the Ycs4p plays a role at the array aside from its segregation. Furthermore, ycs4-1 is defective in silencing at the mating type loci at the permissive temperature. Taken together, our data suggest that there are mitotic as well as nonmitotic chromosomal abnormalities associated with loss of condensin function in budding yeast.
Nicholas T Ingolia and Andrew W Murray. 2002. “Signal transduction. History matters.” Science, 297, 5583, Pp. 948-9. Publisher's Version
Marion A Shonn, Robert McCarroll, and Andrew W Murray. 2002. “Spo13 protects meiotic cohesin at centromeres in meiosis I.” Genes Dev, 16, 13, Pp. 1659-71. Publisher's VersionAbstract
In the absence of Spo13, budding yeast cells complete a single meiotic division during which sister chromatids often separate. We investigated the function of Spo13 by following chromosomes tagged with green fluorescent protein. The occurrence of a single division in spo13Delta homozygous diploids depends on the spindle checkpoint. Eliminating the checkpoint accelerates meiosis I in spo13Delta cells and allows them to undergo two divisions in which sister chromatids often separate in meiosis I and segregate randomly in meiosis II. Overexpression of Spo13 and the meiosis-specific cohesin Rec8 in mitotic cells prevents separation of sister chromatids despite destruction of Pds1 and activation of Esp1. This phenotype depends on the combined overexpression of both proteins and mimics one aspect of meiosis I chromosome behavior. Overexpressing the mitotic cohesin, Scc1/Mcd1, does not substitute for Rec8, suggesting that the combined actions of Spo13 and Rec8 are important for preventing sister centromere separation in meiosis I.
S Biggins and AW Murray. 2001. “The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint.” Genes Dev, 15, 23, Pp. 3118-29. Publisher's VersionAbstract
The spindle checkpoint prevents cell cycle progression in cells that have mitotic spindle defects. Although several spindle defects activate the spindle checkpoint, the exact nature of the primary signal is unknown. We have found that the budding yeast member of the Aurora protein kinase family, Ipl1p, is required to maintain a subset of spindle checkpoint arrests. Ipl1p is required to maintain the spindle checkpoint that is induced by overexpression of the protein kinase Mps1. Inactivating Ipl1p allows cells overexpressing Mps1p to escape from mitosis and segregate their chromosomes normally. Therefore, the requirement for Ipl1p in the spindle checkpoint is not a consequence of kinetochore and/or spindle defects. The requirement for Ipl1p distinguishes two different activators of the spindle checkpoint: Ipl1p function is required for the delay triggered by chromosomes whose kinetochores are not under tension, but is not required for arrest induced by spindle depolymerization. Ipl1p localizes at or near kinetochores during mitosis, and we propose that Ipl1p is required to monitor tension at the kinetochore.
AW Murray and D Marks. 2001. “Can sequencing shed light on cell cycling?” Nature, 409, 6822, Pp. 844-6. Publisher's VersionAbstract
Every organism must have cells that can replicate indefinitely. Can the draft human genome sequence tell us how the cell cycle works and how it evolved? We studied two protein families--the cyclins and their partners the cyclin-dependent kinases (Cdks)--and a conserved regulatory circuit, the spindle checkpoint. Disappointingly, we discovered a few novel cyclins and no new Cdks or components of the spindle checkpoint, and could shed little light on the organization of the cell cycle.
AW Murray. 2001. “Cell cycle. Centrioles at the checkpoint.” Science, 291, 5508, Pp. 1499-502. Publisher's Version
S Biggins, N Bhalla, A Chang, DL Smith, and AW Murray. 2001. “Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae.” Genetics, 159, 2, Pp. 453-70. Publisher's VersionAbstract
Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair alpha-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.
BM Stern and AW Murray. 2001. “Lack of tension at kinetochores activates the spindle checkpoint in budding yeast.” Curr Biol, 11, 18, Pp. 1462-7. Publisher's VersionAbstract
The spindle checkpoint delays the onset of anaphase until all pairs of sister chromatids are attached to the mitotic spindle. The checkpoint could monitor the attachment of microtubules to kinetochores, the tension that results from the two sister chromatids attaching to opposite spindle poles, or both. We tested the role of tension by allowing cells to enter mitosis without a prior round of DNA replication. The unreplicated chromatids are attached to spindle microtubules but are not under tension since they lack a sister chromatid that could attach to the opposite pole. Because the spindle checkpoint is activated in these cells, we conclude that the absence of tension at the yeast kinetochore is sufficient to activate the spindle checkpoint in mitosis.
AD Rudner, KG Hardwick, and AW Murray. 2000. “Cdc28 activates exit from mitosis in budding yeast.” J Cell Biol, 149, 7, Pp. 1361-76. Publisher's VersionAbstract
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.